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Abstract
The thermal conductivity of a single crystal of UNi0.5Sb2 has been measured in
the temperature range between 5 and 300 K. We find a large anisotropy in the
thermal conductivity, which may be explained by the very large difference in the
a and c lattice parameters. The thermal conductivity λab(T ) measured within
the ab plane was found to have absolute values considerably higher than that
(λc) measured along the c axis. The former exhibits at 25 K a pronounced
non-symmetric maximum with an absolute value of about 6 W K−1 m−1

and an almost symmetric minimum at TN = 161 K. The electronic heat
transport, λe, was also derived from the Wiedemann–Franz law along these
two crystallographic directions. Attempts to estimate the bipolar (λbip) and
magnon (λmag) contents to the measured total thermal conductivity have been
done. An analysis of the thermal conductivity data has been performed for both
magnetically ordered and non-ordered states.

1. Introduction

The uranium diantimonides UTSb2 (T = 3d-, 4d-, 5d-electron transition metal) crystallize
with a simple tetragonal structure of the HfCuSi2 type (space group P4/nmm) [1].
Preliminary magnetic and Mössbauer measurements have been performed previously on
powder samples [2, 3]. Most of these compounds have been found to order magnetically at
low temperatures and have been characterized as semimetallic Kondo lattices. One of this
group of uranium ternaries, UNiSb2, exhibits an antiferromagnetic ordering below TN =
175 K [2, 3]. The 121Sb Mössbauer investigation [3] has allowed the determination of the
magnetic structure of this Ni-containing compound to be of AFII type with the magnetic
moments being aligned along the crystallographic fourfold axis in the sequence (+ − − +)

of ferromagnetic (001) planes, and with the magnetic unit cell being doubled along this
axis with respect to the chemical one. The elongation of the magnetic unit cell along
the tetragonal [001] direction causes flat Brillouin zones which produce cylindrical highly
corrugated Fermi surfaces along [001] [4]. Such quasi-two-dimensionality features observed
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recently in some groups of compounds, such as for example UTGa5 [5], have attracted wide
attention. Furthermore, a moment arrangement implies a uniaxial anisotropy and thus any
directional measurements of the bulk properties of single crystals seem especially interesting.
Recently we have succeeded in growing single crystals of selected UTSb2 ternaries, among
them the Ni-containing one [6]. It turned out that both the crystal structure refinement from
the single crystal x-ray data and the EDX analysis have indicated a large deficiency on the
crystallographic Ni atom sites, yielding the composition UNi0.5Sb2 [6]. Systematic studies,
such as magnetic susceptibility, magnetization, electrical resistivity, magnetoresistivity, Hall
effect, thermoelectric power, specific heat, and isothermal magnetocaloric effect measurements
have been performed on such crystals [6–8]. For example, the established value of the
normal Hall coefficient R0 yields in the single-band model the concentration of free carriers
corresponding to 0.55 electrons per formula unit [7]. Magnetic measurements of the oriented
crystals along the main crystallographic axes [6] heave revealed more complex behaviours
compared to those found on the polycrystalline sample [2]. Among others probably the
order–order phase transition takes place at Ttr = 64 K, i.e. much below the Neél temperature
TN = 161 K [7]. The latter temperature, due to some crystallographic disorder caused by Ni
atom deficiency, turned out to be about 14 K lower than that reported for the polycrystalline
sample [2, 3]. At Ttr the results indicate a first-order character of this transition and suggest its
spin-reorientation nature [7].

In this paper we present the results obtained in thermal conductivity measurements
performed for cases of application of the temperature gradient along two main crystallographic
directions, i.e. within the ab plane and along the c axis.

2. Experimental details

Single crystals of UNi0.5Sb2 were grown from a Sb flux as described in [6]. The crystals had
the form of thin platelets of typical dimensions 5 × 5 × 1 mm3 with the c axis perpendicular to
their surfaces. Bar-shaped specimens for physical measurements were cut from oriented bulk
single crystals using a wire saw.

The thermal conductivity was measured using the stationary heat flux method in the
temperature range 5–300 K. The experimental setup and the measurement procedure have been
described in detail in [9, 10]. The temperature gradient along the sample was in the range 0.1–
0.5 K. Particular care was taken to avoid a parasitic heat transfer between the sample and its
environment. The measurement error was below 2% and the surplus error estimated from the
scatter in the measurement points did not exceed 0.3%.

3. Results and discussion

Any analysis of the obtained results of the thermal conductivity in UNi0.5Sb2 is complex due
to the presence in this compound at least two magnetic phase transitions; there may also be a
structural one (see [6]). The thermal conductivity of UNi0.5Sb2 is plotted in figure 1 against
temperature within the range 5–300 K. This is plotted for two temperature gradients: parallel
to the ab plane and along the c axis. The anisotropy apparent in this figure is also demonstrated
in table 1 in the form of the ratio λab/λc.

As one can infer from this figure, the thermal conductivity in the temperature range
TN–300 K diminishes proportionally to T 0.53 and T 2.25, as measured in the ab plane (λab)

or along the c axis (λc), respectively. In the ordered state, λab increases exponentially as
exp(T/230) down to the temperature Tmax ≈ 25 K. Below this temperature the thermal
conductivity λab varies with temperature in other way, namely as T 0.62. A complete different
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Figure 1. Thermal conductivity λ as a function of temperature measured with the temperature
gradient �T applied parallel and perpendicular to the c axis. The straight lines drown through
the experimental points show power or exponential temperature dependences. The dashed curve
indicates the electronic thermal conductivity λe calculated by the Wiedemann–Franz law derived
for both main crystallographic directions.

Table 1. Thermal conductivity anisotropy at various temperatures.

T (K) 10 50 100 150 200 250 300

λab/λc 6.25 4.74 3.45 2.54 2.18 2.04 1.88

temperature dependence with respect to λab(T ) is followed by λc(T ), which decreases in the
entire temperature range below TN.

According to classical theory of the heat transport of metals, semimetals or
semiconductors [11], the electron thermal conductivity λe may be calculated from the
Wiedemann–Franz law: λe = L0T/ρ, where L0 is the Sommerfeld value (L0 = 2.44 ×
10−8 W � K−2), ρ is the measured electrical resistivity (performed on the same samples) and
T is the temperature. The electronic total thermal conductivities λab

e (T ) and λc
e(T ), calculated

from the above law, are presented in figure 1 by the dashed curves.
For the magnetic semimetals the total thermal conductivity, λtot, can be expressed as

follows:

λtot = λph + λe + λbip + λmagn (1)

where λph, λe, λbip and λmagn are the phonon, electronic, bipolar and magnon contributions.
In figure 2 we present the temperature variation of the difference �(λtot − λe). For pure

dielectrics one can describe the phonon thermal conductivity as a simple kinetic expression
λph = 1

3 Cvν�, where Cv is the specific heat of a given dielectric, and ν and � are the
mean velocity and mean free path of phonons. All the elements occurring in the expression
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Figure 2. The difference �(λtot − λe) estimated for two main crystallographic directions,
i.e. parallel and perpendicular to the c axis, by subtracting from the total thermal conductivity λtot

the electronic part λe. The approximate power dependences of the temperature are also shown. The
dash–dotted and dashed curves show interpolations to higher temperatures of the low-temperature
variations of the difference �(λtot − λe) to estimate the bipolar contributions above TN.

describing the phonon heat transport change with temperature, giving a net variation λph(T ).
At low temperatures where T � θ = 224 K (θ is the Debye temperature) phonons are
scattered mainly by crystal boundaries, yielding the dependence λph ∝ T 3. At T > θ the
phonon–phonon scattering results in a temperature dependence λph ∝ T −1. At intermediate
temperatures, i.e. for T > Tmax (Tmax is the temperature corresponding to the maximum in the
phonon thermal conductivity), the phonon–phonon processes dominate, being of the Umklapp
type (U processes), yielding the dependence λph ∝ exp(θ/αT ) [11]. However, any defects
of the crystal or the presence of other phonon–phonon mechanisms in the heat transport leads
to the deviation in the temperature dependences λph(T ) from those mentioned above. This is
well apparent in figure 2. Especially at temperatures T > 150 K there is seen a departure from
the dependence λph ∝ T −1.15: a strong increase of the thermal conductivity with increasing
temperature. A similar change in the thermal conductivity is observed in semimetals at the
moment of switching of the bipolar heat transport [12]. Assuming that electrons and holes are
scattered independently of each other and that their relaxation time is τ ∼ εr , and taking into
account the parabolic bands, one can derive the bipolar contribution of the thermal conductivity,
λbip. This quantity is described as follows:

λbip = T

(
k0

e

)2{ An

ρn
+ A p

ρp
+ 1

ρn + ρp

[
δn + δp − ε0

k0T

]2}
(2)

where k0 is the Boltzmann constant, ρn and ρp are the electrical resistivities of both kinds,
i.e. electrons and holes, ε0 is the energy of overlapped bands (see the inset of figure 3),
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Figure 3. Temperature dependence of the ratio λbip/λe (equation (5)) for r = −0.5 (acoustic
phonons). The inset displays the electronic band scheme for semimetals.

δn,p = [(r + 5/2)Fr+3/2(µ
∗
n,p)]

[(r + 3/2)Fr+1/2(µ∗
n,p)]

, (3)

An,p = (r + 7/2)Fr+5/2(µ
∗
n,p)

(r + 3/2)Fr+1/2(µ∗
n,p)

− (r + 5/2)2 F2
r+3/2(µ

∗
n,p)

(r + 3/2)2 F2
r+1/2(µ

∗
n,p)

, (4)

Fr (µ
∗) is the Fermi integral, r is a factor describing the dependence of relaxation time of heat

carriers carrying heat on the phonon energy, µ∗
n = EF/k0T, µ∗

p = (ε0 − EF)/k0T , and EF is
the Fermi energy. Calculation of the bipolar contribution from expressions (2) to (4) is difficult
due to the lack of the possibility to determine all the parameters occurring in these expressions.
However, it is possible if one assumes some simplification, such as ρp = ρn and that the
effective of masses of electrons and holes are equal, m∗

n = m∗
p (actually m∗

p � m∗
n), the Fermi

energy EF = ε0/2, µ∗
p = µ∗

n , δn = δp = δ, and An = A p = A. Then, according to [12], the
ratio between the bipolar and electron conductivities is given by

λbip/λe = (δ − ε0/2k0T )2

A
. (5)

For r = −0.5, i.e. where we are concerned only with the scattering on phonons, expression (5)
gives the dependence presented in figure 3. From the data of figure 1 (values of λe) and those
in figure 2, it is possible to calculate the temperature dependence λbip(T ), and the obtained data
are presented in figures 4. The long dashed line presents the results which have been determined
from the experimental data of the electron thermal conductivity for different magnitudes of ε0

given in figures 4(a) and (b). The black circles displayed in these figures mark the calculated
bipolar thermal conductivity taken as the difference between the differential curves �(λtot−λe)

and by the interpolated dot–dashed and dashed lines, depending on the measured direction,
shown in figure 2.

Within the temperature range 160–300 K, the ε0 values are found to be of about one
order of magnitude larger along the c direction than those estimated in the ab plane. Such an
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Figure 4. Bipolar thermal conductivity λbip extracted from the experiment (dashed curve) and
compared to calculated values for different magnitudes of energy for two cases: when the
temperature gradient was applied (a) perpendicular and (b) parallel to the c axis.

anisotropy in ε0 may originate from the difference in the degree of the degeneration of electron
gas µ∗

n along these two crystallographic directions. It is well known that one can estimate µ∗
n

directly from the thermoelectric power S(T ) [7]. Thus in the work [13] the Si (T ) dependences
measured parallel and perpendicular to the c axis were given for the same single crystals. The
ratio S⊥/S‖ ∼= 20 determined for T > TN confirms the high anisotropy observed by us in ε0.

It is obvious that the difference in slope of the curves describing the bipolar thermal
conductivity and of those calculated from the electronic thermal conductivity content (λe =
L0T/ρ) is probably caused by not taking into account other resistivity features, like, for
example, scattering of heat carriers on the disordered spins, or it may be also a result of the
fact that below the ordered temperature the contributions into the thermal conductivity are
originated not only by phonons but also by magnons (note the assumptions given above from
which expression (5) has been derived).

Usually the theoretical analysis of the lattice thermal conductivity is based on the Debye
model in which λph is a function of the inverse relaxation time τi :

λph = GT 3
∫ �/T

0

x4

τ−1 sinh2(x/2)
dx (6)

where x = hω/k0T , G is constant, and τ−1 is the sum of inverse relaxation times for various
phonon scattering processes: τ−1 = �τ−1

i , where τi = τd, τpd, τU are relaxation times for the
phonon scattering on dislocations, point defects and impurities, and finally a Umklapp phonon–
phonon processes, respectively. The relaxation time can be expressed by a function dependent
on the frequency ω for a particular scattering process τi [11]: τ−1

d = C1ω—dislocations,



Thermal conductivity of UNi0.5Sb2 single crystal 3103

Figure 5. The difference �(λtot − λe) derived for two cases where the gradient is applied (a)
within the ab plane and (b) parallel to the c axis both as a function of temperature: experiment
(open circles: left-hand scale) and fitting to equation (6) (solid curve: left-hand scale) as well as the
derived magnon part of the thermal conductivity (long dashed curves:-right-hand scale).

Table 2. Parameters of fittings of equation (6) to the experimental data.

Crystallographic axes c1 c2 (s3) c3 (s) a (K) v (m s−1) � (K)

c 2.2 × 106 9.0 × 103 7.5 × 106 75 6000 224
ab 3.7 × 106 8.5 × 105 1.4 × 107 70 6000 224

τ−1
pd = C2ω

4—point defects, and τ−1
U = C3ω

2T exp[−a/T ]—Umklapp processes. Taking
into account the Debye temperature θ = 224 K [8] and a mean value of sound velocity for the
material with a similar density to that of the investigated sample, i.e. vph ≈ 6000 m s−1 [14], as
well as the functions dependent on ω, for different τi values, we have made fits of expression (6)
to the experimental data of the difference �(λtot − λe) (see in figures 5(a) and (b) the curves
measured within the ab planes and those along the c directions, respectively). Table 2 gives the
obtained parameters of the least squares fitting of experimental data to equation (6).

For the assumed values of sound velocity and Debye temperature, we have found a good
agreement of the experimental data with equation (6) in the range of low temperatures where
a domination of phonon scattering on point defects, impurities and dislocations takes place.
On the other hand, at temperatures above 50 K, where we took into consideration only the
Umklapp processes, the fitting curve lies below the experimental values. The reason for this
is not taking into account another mechanism of phonon scattering (e.g. phonon–electron) as
well as the presence of other mechanisms of the heat transport apart from the phonon ones.
In magnetically ordered materials such an additional mechanism is the magnon heat transport.
Hence the difference �(λtot −λe) certainly contains below TN the contribution of magnons, but
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of course it is difficult to estimate exactly to what extent this is, having in mind the possible
other contributions mentioned above. However, to simplify this problem we have assumed that
this difference is just the magnon contribution.

In figures 5(a) and (b) the dashed line represents the derived magnon thermal conductivity
λmagn, below the ordering temperature. This kind of contribution was found from the difference
between the experimental curves (open circles) and the fit to expression (6) (solid lines)
calculated within the ab plane and along the c axis, respectively. The derived magnon part
of the conductivity within the ab plane (figure 5(a)) increases with increasing temperature,
achieving a broad maximum centred at about 80 K with a value of about 1 W K−1 m−1.
Then, it diminishes to zero at about 20 K. On the other hand, the maximum value of about
0.1 W K−1 m−1 (about 10%) of the difference �(λtot − λe) was found near TN for the magnon
part of the conductivity derived for the c direction (figure 5(b)). On lowering the temperature,
this part of λab

magn decreases to almost zero in the vicinity of 64 K and below this temperature
it starts to grow and goes through a maximum at 38 K with a value of 0.04 W K−1 m−1,
and finally vanishes around 25 K. It is worthwhile noting that at temperatures close to 64 K
where the ab part of λmagn(T ) reaches its maximum, there occur anomalies in the temperature
dependence of the susceptibility, heat capacity, thermoelectric power, electrical resistivity and
Hall coefficient, probably associated with the reorientation of the magnetic moments, as have
been reported (in [7]). It is also interesting to point out that only the part of the thermoelectric
power measured perpendicularly to the c axis, i.e. within the ab plane, exhibits a very distinct
minimum in S⊥(T ) around this temperature, compared to the almost negligibly small cusp
apparent near this temperature along the c axis.

4. Conclusions

Previous numerous investigations of UNi0.5Sb2 have indicated a set of interesting physical
properties of this compound. In the present work we have measured the heat transport in both
states, namely in the magnetically ordered state and in the paramagnetic one. Among others,
the work demonstrates the influence of the change in the magnetic structure on the total thermal
conductivity and large its anisotropy as inferred from the measurements performed within the
ab plane and along the c axis. Furthermore, we have carried out some attempts to extract
from the total thermal conductivity the temperature dependences of the electronic, bipolar and
magnon parts of the thermal conductivity. For example, the estimated value of the energy ε0

from the bipolar dependence shows that UNi0.5Sb2 is a semimetal. The magnon part of the
thermal conductivity differs in magnitude and in the temperature dependences depending on
the direction of the measurements. As to the last aspect it would be interesting to measure the
thermal conductivity of the reference non-magnetic compound with the same crystal structure,
if of course such a compound exists at all.
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